Chem. Ber. 113, 1072-1083 (1980)

Untersuchungen zur Reaktivität von Metall-π-Komplexen, XXXI¹⁾

Zweikernige Palladium(I)-Komplexe mit brückenbildenden Carboxylat-Liganden

Helmut Werner* und Hans-Jürgen Kraus

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg

Eingegangen am 13. Juni 1979

Bei den Reaktionen der Palladium(II)-Komplexe $[2-RC_3H_4Pd]_2(OCOR')_2$ $[R = H, CH_3, i-C_3H_7, t-C_4H_9$ und $R' = CH_3$ (3), C_6H_5 (7), CF_3 (9)] mit der äquimolaren Menge Pd $[P(i-C_3H_7)_3]_2$ in Hexan entstehen in sehr guter Ausbeute die Zweikernkomplexe $(2-RC_3H_4)(OCOR')Pd_2[P(i-C_3H_7)_3]_2$ (6, 8, 10), in denen Palladium in der Oxidationszahl + 1 vorliegt. Die Synthese von $(C_5H_5)(OCOCH_3)Pd_2[P(i-C_3H_7)_3]_2$ (15) geht aus von den Diolefin-Komplexen $[Cl(C_6H_8)Pd]_2$ - $(OCOCH_3)_2$ (11) und $[Cl(C_7H_{10})Pd]_2(OCOCH_3)_2$ (12), die mit TlC_5H_5 zu $C_5H_5Pd(dien)$ - $OCOCH_3$ [dien = 1,3-C_6H_8 (13), 1,3-C₇H₁₀ (14)] reagieren. Aus 13 oder 14 und Pd[P(i-C_3H_7)_3]_2 entsteht 15. In den Komplexen 11 – 14 ist das Diolefin nur über eine C = C-Bindung (*dihapto*) koordiniert. – Bei der Reaktion von Pd(acac)_2 mit Pd[P(i-C_3H_7)_3]_2 oder P(i-C_3H_7)_3 entsteht die Verbindung Pd(acac)_2P(i-C_3H_7)_3 (17), die einen 0,0-gebundenen und einen C-gebundenen Acetylacetonatliganden enthält.

Studies on the Reactivity of Metal π-Complexes, XXXI¹ Dinuclear Palladium(I) Complexes with Bridging Carboxylate Ligands

The reaction of $[2-RC_3H_4Pd]_2(OCOR')_2$ [R = H, CH₃, i-C₃H₇, t-C₄H₉ and R' = CH₃ (3), C₆H₅ (7), CF₃ (9)] with an equimolar amount of Pd[P(i-C₃H₇)₃]₂ in hexane produces in very good yields the dinuclear complexes $(2-RC_3H_4)(OCOR')Pd_2[P(i-C_3H_7)_3]_2$ (6, 8, 10) in which palladium has the oxidation state +1. The synthesis of $(C_5H_5)(OCOEH_3)Pd_2[P(i-C_3H_7)_3]_2$ (15) starts with the diolefin complexes $[Cl(C_6H_8)Pd]_2(OCOCH_3)_2$ (11) and $[Cl(C_7H_{10})Pd]_2(OCOCH_3)_2$ (12) which react with TlC₅H₅ to give C₅H₅Pd(dien)OCOCH₃ [dien = 1,3-C₆H₈ (13), 1,3-C₇H₁₀ (14)]. The reaction of 13 or 14 with Pd[P(i-C₃H₇)₃]₂ gives 15. In the complexes 11 – 14 the diolefin is coordinated only with one C = C bond (*dihapto* link). – The reaction of Pd(acac)₂ with either Pd[P(i-C₃H₇)₃]₂ or P(i-C₃H₇)₃ leads to Pd(acac)₂P(i-C₃H₇)₃ (17) which contains one 0,0-bonded and one C-bonded acetylacetonate ligand.

1. Einführung

Im Rahmen von Untersuchungen zur Reaktivität von π -Allyl- π -cyclopentadienyl-Metallkomplexen C₅H₅M(2-RC₃H₄) hatten wir kürzlich den Zugang zu einer neuen Klasse von Zweikernkomplexen mit Metall-Metall-Bindung gefunden²). Durch Reaktion von C₅H₅M(2-RC₃H₄) mit einer Lewis-Base L^{2, 3)} oder mit einem Bis(phosphan)-Metallkomplex ML₂ (M = Pd, Pt)^{4, 5}) erhält man meist quantitativ die Verbindungen (C₅H₅)(2-RC₃H₄)M₂L₂, in denen *beide* π -ge-

© Verlag Chemie, GmbH, D-6940 Weinheim, 1980 0009 - 2940/80/0303 - 1072 \$ 02.50/0 bundenen Liganden (der Cyclopentadienyl- und der Allyl-Ligand) an *beide* Metallatome koordiniert sind und somit eine Brückenfunktion einnehmen. Statt *einer* C_5H_5 - und *einer* 2-RC₃H₄-Gruppe können auch zwei 2-RC₃H₄-Gruppen oder *ein* Halogen und *eine* Allylgruppe als Brückenliganden vorliegen^{1,4}). Die Synthese von Komplexen (C_5H_5)(2-RC₃H₄)MM'L₂ und (2-RC₃H₄)₂MM'L₂ mit zwei verschiedenen Metallatomen (M = Pd, M' = Pt) ist ebenfalls gelungen⁶).

Die durch die bisherigen Arbeiten^{1,4-6)} sich abzeichnende Anwendungsbreite des in Gl. (1) allgemein formulierten Syntheseprinzips, das wir vereinfacht als ",1 + 1"-Addition bezeichnen, veranlaßte uns, auch noch andere Liganden X und Y als C_5H_5 , $2-RC_3H_4$, Halogen und Pseudohalogen (wie z. B. SR⁷⁾) als Koordinationspartner zu testen. Dabei interessierte uns vor allem das *Acetat-Ion* 1, das einerseits mit dem 2-Methylallyl-Anion 2 isoelektronisch ist, andererseits jedoch nicht zu den π -Donatoren sondern zu den eher "klassischen" Liganden wie den Halogeniden zählt.

$$(X)M(Y) + M'L_{2} \longrightarrow L-M \xrightarrow{X} M'-L$$

$$(1)$$

$$CH_{3} \qquad CH_{3}$$

$$O \xrightarrow{C} O 1 \qquad H_{2}C \xrightarrow{C} CH_{2} 2$$

Palladiumkomplexe mit brückenbildenden Acetatgruppen, wie z. B. 3, sind bekannt⁸⁾, doch enthalten diese *keine* Metall-Metall-Bindung; die Oxidationszahl des Palladiums in 3 ist + 2. In einem Komplex der allgemeinen Zusammensetzung 4 oder 5 mit $\widehat{XX} = OC(CH_3)O$ hätte das Palladium jedoch die Oxidationszahl + 1 und es wäre daher – wenn man Diamagnetismus voraussetzt – eine Pd – Pd-Bindung zu erwarten.

In der vorliegenden Arbeit berichten wir über die Synthese und Eigenschaften solcher Pd^I – Pd^I-Verbindungen mit brückenbildenden Acetat-, Benzoat- und Trifluoracetat-Liganden sowie über Versuche, auch das Acetylacetonat-Ion als Brückenligand einzuführen.

2. Die Kombination Allyl/Carboxylat

Von den beiden Synthesewegen für die Komplexe $(\mu$ -X) $(\mu$ -Y)Pd₂L₂ - 1. (X)Pd(Y) + L, und 2. (X)Pd(Y) + PdL₂ - kommt der erste für die Verbindungen des Typs 4 nicht in Betracht. Die Zweikernkomplexe 3 reagieren mit Lewis-Basen L, wie z. B. PPh₃ oder AsPh₃, im Molverhältnis 1:2 nicht zu (2-RC₃H₄)(OCOCH₃)Pd₂L₂ sondern zu (2-RC₃H₄)Pd(L)OCOCH₃⁹⁾.

Solche einkernigen Verbindungen, und zwar mit $L = P(i-C_3H_7)_3$, sind auch das Hauptprodukt bei den Reaktionen von 3a-d mit $Pd[P(i-C_3H_7)_3]_2$ bei Raumtemperatur in Benzol. Setzt man die gleichen Reaktionspartner jedoch bei $-50^{\circ}C$ in Hexan um und läßt langsam erwärmen, so werden die gesuchten Zweikernkomplexe 6a-d gemäß Gl. (2) in guten Ausbeuten erhalten. Auf analogem Wege – siehe Gl. (3) und (4) – sind auch die entsprechenden Komplexe 8c, 8d und 9d mit Benzoat und Trifluoracetat als Brückenliganden zugänglich. Die für ihre Synthese benötigten Ausgangsverbindungen 7c,7d und9d wurden nach bekannten Methoden⁸⁾ aus [2-RC₃H₄PdCl]₂ und AgOCOC₆H₅ bzw. aus 3d und Trifluoressigsäure hergestellt. Erstmals synthetisiert wurden auch die 2-Chlorallyl-Komplexe [2-ClC₃H₄Pd]₂(OCOR')₂ (R' = C₆H₅, CF₃), die jedoch in Hexan bei tiefen Temperaturen praktisch unlöslich sind und unter diesen Bedingungen daher nicht mit Pd[P(i-C₃H₇)₃]₂ reagieren.

$$[2-RC_3H_4Pd]_2(OCOCH_3)_2 + 2 PdL_2 \longrightarrow 2 (2-RC_3H_4)(OCOCH_3)Pd_2L_2$$
(2)
3a-3d 6a-6d

 $[2-\mathrm{RC}_{3}\mathrm{H}_{4}\mathrm{Pd}]_{2}(\mathrm{OCOC}_{6}\mathrm{H}_{5})_{2} + 2 \mathrm{PdL}_{2} \longrightarrow 2 (2-\mathrm{RC}_{3}\mathrm{H}_{4})(\mathrm{OCOC}_{6}\mathrm{H}_{5})\mathrm{Pd}_{2}\mathrm{L}_{2}$ (3) 7c,7d 8c,8d

 $[2-RC_{3}H_{4}Pd]_{2}(OCOCF_{3})_{2} + 2 PdL_{2} \longrightarrow 2 (2-RC_{3}H_{4})(OCOCF_{3})Pd_{2}L_{2}$ (4) 9d 10d $\frac{R}{L} = P(i-C_{3}H_{7})_{3}$ $\frac{R}{L} = P(i-C_{3}H_{7})_{3}$

Die nach Gl. (2)–(4) erhaltenen Zweikernkomplexe bilden gelbe Feststoffe, die nur wenig luftempfindlich sind und sich in den meisten organischen Solvenzien gut lösen. In Benzol beobachtet man gemäß Gl. (5) eine langsame Reaktion (unter gleichzeitiger Metallabscheidung) zu den entsprechenden einkernigen Verbindungen (2-RC₃H₄)-Pd(L)OCOR'. Der Prozeß läßt sich NMR-spektroskopisch sehr gut verfolgen und ist z. B. für **6d** bei Raumtemperatur nach ca. 14 h beendet. Die ¹H-NMR-Daten der Komplexe (2-RC₃H₄)Pd(L)OCOR' (L = P(i-C₃H₇)₃) sind in Tab. 1 zusammengestellt.

R'	Solvens	δ (H ¹)	$\delta\left(H^2\right)$	J(PH)	δ (H ³)	δ(H ⁴)	δ(R ')
CH,	CDCl ₃	4.65 (m)	3.58 (bs)		2.10 (d) ^{b)}	1.60 (d) ^{c)}	2.03 (s)
CH ₃	$C_6 D_6$	$4.62 (d)^{d}$	3.64 (d)	9.0	c)	e)	2.23 (s)
CH,	$C_6 D_6$	$4.76 (d)^{(1)}$	3.80 (d)	9.0	c)	c)	2.40 (s)
CH,	CDCl,	4.80 (m)	3.74 (d)	7.8	3.28 (bs)	e)	2.0 (s)
C ₆ H ₅	$C_6 D_6$	4.73 (d) ^{d)}	3.83 (d)	9.0	e)	e)	8.67 – 7.0 (m)
C ₆ H ₅	$C_6 D_6$	4.73 (m)	3.82 (d)	9.0	3.30 (bs)	c)	$8.20 - 7.27 (\mathrm{m})$
CF ₃	CDCl ₃	4.92 (m)	3.55 (d)	9.0	2.92 (m)	e)	
	R' CH ₃ CH ₃ CH ₃ CH ₃ C ₆ H ₅ C ₆ H ₅ CF ₃	R' Solvens CH ₃ CDCl ₃ CH ₃ C ₆ D ₆ CH ₃ C ₆ D ₆ CH ₃ C ₆ D ₆ CH ₅ C ₆ D ₆ C ₆ H ₅ C ₆ D ₆ CF ₃ CDCl ₃	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Tab. 1. ¹H-NMR-Daten der Komplexe (2-RC₃H₄)Pd[P(i-C₃H₇)₃](OCOR')^{a)} [60 MHz; chemische Verschiebungen δ in ppm ausnahmslos zu niederen Feldstärken, bezogen auf int. TMS; Multiplizitäten in Klammern; Kopplungskonstanten J in Hz. Für Zuordnung siehe Gl. (5)]

^{a)} Angaben für die P(i-C₃H₇)₃-Protonen wurden der Einfachheit halber weggelassen; man beobachtet stets ein Multiplett für PCHCH₃ bei $\delta = 2.5 - 1.3$ und ein Dublett von Dubletts für PCHCH₃ bei $\delta = 1.3 - 0.7$. $^{-6)} J(H^1H^3) = 5.0$. $^{-c)} J(H^2H^4) = 3.0$. $^{-d)} J(PH) = 6.0$. $^{-e)}$ Verdeckt von Signalen der P(i-C₃H₇)₃-Protonen. $^{-f)} J(PH) = 7.2$.

Eine Komproportionierung gemäß Gl. (6) ließ sich auch oberhalb der Schmelz- bzw. Zersetzungspunkte der Zweikernkomplexe nicht beobachten. Eine solche Ligandenübertragungsreaktion findet jedoch unter massenspektrometrischen Bedingungen statt, wie z. B. das Auftreten der Ionen $(C_3H_5)_2Pd_2L_2^+$ und $(CH_3COO)_2Pd_2L_2^+$ im Massenspektrum von **6a** anzeigt. Wegen der geringen Flüchtigkeit der Verbindungen $(2\text{-}RC_3H_4)(OCOR')Pd_2L_2$ mußte bei der Aufnahme der Massenspektren eine relativ hohe Einlaßtemperatur gewählt werden, was auch die meist sehr geringen Intensitäten der Peaks im Bereich hoher Massen/Ladungs-Verhältnisse erklärt. Eine sichere Zuordnung der Fragmente mit einem und mit zwei Palladiumatomen ist aufgrund der charakteristischen Isotopenmuster möglich¹⁰.

Tab. 2. ¹H-NMR-Daten der Zweikernkomplexe (2-RC₃H₄)(OCOR')Pd₂[P(i-C₃H₇)₃]₂, in C₆D₆ (60 MHz; chemische Verschiebungen δ in ppm ausnahmslos zu niederen Feldstärken, bezogen auf int. TMS; Multiplizitäten in Klammern; Kopplungskonstanten J in Hz)

R 11 I 11

$2-\mathrm{RC}_{3}\mathrm{H}_{4} = \frac{\mathrm{H}_{2}^{2}}{\mathrm{H}^{2}} \frac{\mathrm{H}_{4}^{2}}{\mathrm{H}^{2}}$							
Komplex	δ (H ¹)	δ (H ²)	δ(R)	δ (R')			
6a	2.61 (m)	1.43 (m)	a)	2.05 (s)			
6b	2.71 (m)	1.57 (m)	1.87 (t) ^{ъ)}	2.03 (s)			
6c	2.73 (m)	1.55 (m)	c)	2.10 (s)			
6d	2.78 (m)	c)	1.48 (s)	2.10 (s)			
8c	2.61 (m)	1.61 (m)	c)	7.20 (m), 8.30 (m) ^d			
8d	2.85 (m)	1.55 (m)	1.50 (s)	7.22 (m), 8.37 (m) ^d			
10 d	2.88 (m)	1.55 (m)	1.35 (s)	n en			

^{a)} Signal nicht genau lokalisierbar. – ^{b)} J(PH) = 5.0. – ^{c)} Verdeckt von Signalen der P(i-C₃H₇)₃-Protonen. – ^{d)} Intensität der Signale bei $\delta = 7.20$ bzw. 7.22 entspricht 3H, diejenige der Signale bei $\delta = 8.30$ bzw. 8.37 entspricht 2H.

Die ¹H-NMR-Daten der Zweikernkomplexe mit brückenbildenden Allyl- und brückenbildenden Carboxylat-Liganden sind in Tab. 2 zusammengestellt. Es wurde dabei auf eine Angabe der P($i-C_3H_7$)₃-Protonensignale verzichtet, da deren Lage nur wenig von den Substituenten R und R' beeinflußt wird. Man beobachtet in den Spektren von 6, 8, 10 für die PCHCH₃-Protonen ein breites Multiplett der relativen Intensität 6 im Bereich von $\delta = 2.5 - 1.6$ und für die PCHCH₃-Protonen ein Pseudo-Quartett der relativen Intensität 36 im Bereich von $\delta = 1.5 - 0.7$. Die Kopplung der Methylprotonen der Isopropylreste mit *beiden* Phosphoratomen weist auf das Vorliegen einer linearen P – Pd – Pd – P-Einheit hin³⁾. Für die *syn*- und *anti*-Protonen, H¹ und H², der Allyl-Liganden findet man stets schlecht aufgelöste Multipletts, deren chemische Verschiebung derjenigen der Allyl-Protonen von (C₅H₅)(2-RC₃H₄)Pd₂[P(i-C₃H₇)₃]₂ und (2-RC₃H₄)₂Pd₂[P(i-C₃H₇)₃]₂ entspricht^{1, 3, 5)}. Die vorgeschlagene *symmetrische* Struktur der Zweikernkomplexe **6, 8, 10** wird durch die Aufspaltung des Signals der CH₃-Protonen der 2-Methylallylgruppe von **6b** in ein Triplett gestützt.

3. Die Kombination Cyclopentadienyl/Acetat

Der Zugang zu einem Zweikernkomplex des Typs 5 mit $\hat{X} = OC(CH_3)O$ (Acetat) gelang auf völlig unerwartete Weise. Wir hatten versucht, nach der Methode von *Volger*¹¹ (die sich für die Darstellung der Komplexe [2-RC₃H₄PdCl]₂ auch bei unseren Arbeiten sehr bewährt hat) durch Umsetzung von Na₂PdCl₄ mit 1,3-Cyclohexadien in Eisessig die schon länger bekannte Verbindung [C₆H₉PdCl]₂¹² zu synthetisieren, erhielten stattdessen jedoch in guter Ausbeute ein Produkt der Zusammensetzung [Cl(C₆H₈)Pd]₂-(OCOCH₃)₂ (11). Mit 1,3-Cycloheptadien entsteht entsprechend [Cl(C₇H₁₀)Pd]₂-(OCOCH₃)₂ (12). Beide Verbindungen sind hellgelbe Festkörper, die an Luft weitgehend beständig sind (vor allem 12) und sich in den meisten organischen Lösungsmitteln, mit Ausnahme gesättigter Kohlenwasserstoffe, gut lösen. Der dimere Charakter ist am Beispiel 12 durch Molmassebestimmung (in Benzol) gesichert.

11 und 12 sind – wie der in Gl. (7) skizzierte Strukturvorschlag deutlich macht – Analoga der von *Powell* und *Jack*¹³⁾ beschriebenen, carboxylat-verbrückten Zweikernkomplexe [X(L)Pd]₂(OCOR)₂ (X = Cl, Br, I; L = PMe₂Ph, AsMe₂Ph; R = CH₃, CH₂Cl, C(CH₃)₃ etc.). Den Beweis für die monoolefinartige Koordination (*dihapto*-Bindung) des 1,3-Cyclohexadiens und 1,3-Cycloheptadiens in 11 und 12 liefern die ¹³C-NMR-Spektren (Tab. 3). In diesen findet man für die olefinischen Kohlenstoffatome jeweils *vier* verschiedene Signale, von denen drei (wahrscheinlich diejenigen der C-Atome der koordinierten Doppelbindung und des dazu benachbarten sp²-hybridisierten C-Atoms) sehr stark gegenüber freiem 1,3-C₆H₈ [δ (C-1) = 124.6, δ (C-2) = 126.1, in CDCl₃¹⁴)] bzw. freiem 1,3-C₇H₁₀ [δ (C-1) = 125.6, δ (C-2) = 133.2, in CCl₄¹⁵)] nach höherem Feld verschoben sind. Von ein- oder zweikernigen Metallkomplexen mit *dihapto*-gebundenem 1,3-Cyclohexadien oder 1,3-Cycloheptadien ist unseres Wissens nur ein Beispiel, nämlich der Komplex C₅H₅Mn(CO)₂C₆H₈¹⁶) bekannt; ¹³C-NMR-Daten sind davon bisher jedoch nicht mitgeteilt worden.

Die Reaktionen von 11 und 12 mit TlC_5H_5 führen gemäß Gl. (8) unter Spaltung der Acetatbrücken zu den monomeren Cyclopentadienylpalladium-Komplexen C_5H_5Pd -(dien)OCOCH₃ (13, 14), in denen das Diolefin wiederum nur über *eine* C=C-Bindung koordiniert ist. Die ¹H- und ¹³C-NMR-Daten dieser Verbindungen (von 14 nur ¹H) sind in Tab. 3 angegeben. 13 bildet hellrote, stark riechende, luftempfindliche Kristalle, die bei Raumtemperatur unter Stickstoff stabil sind und sich ab 38°C zersetzen. Wesentlich instabiler ist der Komplex 14, der sich schon bei 20°C in fester Form langsam zersetzt, so daß auch keine befriedigenden Analysenwerte erhalten wurden.

13 und 14 sind in organischen Solvenzien sehr gut löslich. Sie reagieren z. B. in Benzol oder Hexan bereitwillig sowohl mit freiem Triisopropylphosphan als auch mit $Pd[P(i-C_3H_7)_3]_2$. Während im ersten Fall nach Aussage des NMR-Spektrums ein Produktgemisch entsteht, in dem 15 in geringer Menge nachweisbar ist, entsteht mit $Pd[P(i-C_3H_7)_3]_2$ der gesuchte Zweikernkomplex $(C_5H_5)(OCOCH_3)Pd_2[P(i-C_3H_7)_3]_2$ in guter Ausbeute [Gl. (9)]. Der orangerote Feststoff ist bemerkenswert stabil und zersetzt sich erst nach mehreren Tagen an Luft. Das ¹H-NMR-Spektrum von 15 (Tab. 3) zeigt neben den Signalen der Acetat- und Phosphanprotonen ein 1:2:1-Triplett für die C_5H_5 -Protonen, das von der Kopplung mit 2 äquivalenten Phosphorkernen herrührt.

Die Synthese des zu 15 analogen μ -Trifluoroacetato-Komplexes (C₅H₅)(OCOCF₃)Pd₂-[P(i-C₃H₇)₃]₂ ist nicht gelungen. Bei der Reaktion von 15 mit CF₃CO₂H entsteht zwar Essigsäure (NMR), doch beobachtet man statt eines neuen C₅H₅-Signals im ¹H-NMR- Spektrum im Bereich von $\delta = 5.5 - 4.0$ zwei Multipletts (entsprechend je 2H), die auf die Bildung eines substituierten Cyclopentadienylrings hinweisen. Mit (CH₃)₃SiCl reagiert **15** glatt unter Austausch des Acetat-Brückenliganden gegen Chlorid zu (C₅H₅)(Cl)Pd₂[P(i-C₃H₇)₃]₂ (**16**) [Gl. (10)]. Dieser Komplex ist auch ausgehend von C₅H₅Pd[P(i-C₃H₇)₃]Cl und Mg oder LiAlH(O-t-C₄H₉)₃ (allerdings in wesentlich schlechterer Ausbeute) zugänglich ¹⁷.

Tab. 3. ¹H- und ¹³C-NMR-Daten der Komplexe 11–15 [¹H: 60 MHz; ¹³C: 90 MHz, in Off-Resonanz; chemische Verschiebungen δ in ppm ausnahmslos zu niederen Feldstärken, bezogen auf int. TMS; Multiplizitäten in Klammern; Kopplungskonstanten J in Hz]

	Komplex	Solvens	δ (CH)	δ (CH ₂)	δ (CH ₃ CO ₂)	$\delta(C_5H_5)$
¹ <i>H</i> :	11	CDCl ₃	5.62 – 4.86 (m)	2.58 – 1.0 (m)	2.02 (s)	
	12	CDCl ₃	5.66 4.6 (m)	2.66 – 1.0 (m)	2.02 (s)	
	13	C_6D_6	5.6 — 4.6 (m)	1.66 – 0.8 (m)	1.63 (s)	5.75 (s)
	14	C_6D_6	4.87 — 4.18 (m)	1.7 — 0.7 (m)	1.73 (s)	5.73 (s)
	15 ^{a)}	C_6D_6			2.01 (s)	5.08 (t) ^{b)}
¹³ C:	11	CDCl ₃	101.4 (d) 81.6 (d) 74.1 (d) 68.9 (d)	26.1 (t) 24.3 (t)	$\frac{170.1 (s)^{c)}}{21.1 (q)^{d}}$	
	12	CDCl ₃	110.5 (d) 87.7 (d) 78.1 (d) 72.5 (d)	33.6 (t) 32.2 (t) 21.1 (t)	169.6 (s) ^{c)} 21.1 (q) ^d	
	13	$C_7 D_8 $ ^e	87.2 (d) 68.5 (d) 66.4 (d) 58.7 (d)	29.8 (t) 22.3 (1)	$\frac{168.7 (s)^{c)}}{22.0 (q)^{d}}$	93.4 (d)

^{a)} Signale der P(i-C₃H₇)₃-Protonen bei $\delta = 2.1$ (CH) und 1.2 (CH₃). $-^{b)} J = 2.6$. $-^{c)}$ Signal von CH₃CO₂. $-^{d)}$ Signal von CH₃CO₂. $-^{c)}$ Bei -30° C.

4. Versuche zur Synthese zweikerniger µ-Acetylacetonato-(Pd + Pd)-Komplexe

Aufgrund der gelungenen Synthese von 6a - d, 8c, 8d und 10d hatten wir erwartet, daß Komplexe des allgemeinen Typs 4 auch mit XX = Acetylacetonat (acac) erhalten werden können. Die $Reaktion von <math>(2-t-C_4H_9C_3H_4)Pd(acac)$, dargestellt aus 3d und Acetylaceton in Gegenwart von Na₂CO₃, mit Pd[P(i-C₃H₇)₃]₂ scheint in der Tat einen solchen Komplex $(2-t-C_4H_9C_3H_4)(acac)$ -Pd₂[P(i-C₃H₇)₃]₂ zu ergeben [¹H-NMR (in C₆D₆): $\delta = 0.95$ (s), 9 H, $t-C_4H_9$; 1.60 (bs), 2 H, H^1 ; 1.88 (s), 6 H, CH(COCH₃)₂; 2.33 (m), 2 H, H^2 ; 5.30 (s), 1 H, CH(COCH₃)₂; für Zuordnung der Allylprotonen H¹ und H² siehe Tab. 2], doch konnte dieser bisher nicht in reiner Form isoliert werden.

 $Pd(acac)_2$ reagiert mit einer äquimolaren Menge $Pd[P(i-C_3H_7)_3]_2$ in Benzol zu $Pd(acac)_2P(i-C_3H_7)_3$ (17) und nicht zu $(acac)_2Pd_2[P(i-C_3H_7)_3]_2$. Auch bei sehr langsamem Umsatz (Raumtemperatur, Reaktionszeit 12 h) läßt sich eine Bildung des gesuchten Zweikernkomplexes nicht nachweisen. 17 entsteht auch aus $Pd(acac)_2$ und freiem Triisopropylphosphan; für die Darstellung ist diese Reaktion vorzuziehen.

Die ¹H-NMR-Daten [δ = 1.63 (s), 3H, H^a ; 1.88 (s), 3H, H^c ; 2.58 (s), 6H, H^c ; 3.68 (d), 1H, H^d , J(PH) = 4.6 Hz; 5.17 (s), 1H, H^b ; in C₆D₆] belegen, daß ein Acetylacetonatligand chelatartig 0,0-gebunden und der zweite einzähnig C-gebunden vorliegt. Die Eigenschaften von 17 sind denen der kürzlich beschriebenen Verbindung Pd(acac)₂PPh₃¹⁸⁾ sehr ähnlich.

5. Schlußbemerkung

Das Syntheseprinzip der "1 + 1"-Addition [Gl. (1)] läßt sich auch für die Darstellung von (Pd-Pd)-Zweikernkomplexen mit X = 2-R-Allyl (R = H, CH₃, i-C₃H₇, t-C₄H₉) und Y = Carboxylat OCOR' (R' = CH₃, C₆H₅, CF₃) als Brückenliganden anwenden. Die so erhaltenen Verbindungen **6a – d, 8c, 8d** und **10d** sind bemerkenswert stabil und dissoziieren in Lösung nicht – wie es im Fall der Komplexe (C₅H₅)(2-RC₃H₄)Pd₂L₂ teilweise zu beobachten ist⁵⁾ – in (2-RC₃H₄)Pd(OCOR') und PdL₂. Obwohl eine partielle Spaltung der Carboxylatbrücke in **6, 8** und **10** durch Lewis-Basen (z. B. durch Olefine) bisher nicht gelungen ist, sollte es sich lohnen, die katalytische Aktivität der Komplexe einmal zu testen. Die Arbeiten von *Teyssie* et al.¹⁹ weisen hierfür den Weg.

Gemäß einer etwas modifizierten "1 + 1"-Addition (wobei als Edukte (X)Pd(Y) die recht labilen Diolefin-Komplexe $C_5H_5Pd(dien)OCOCH_3$ mit dien = 1,3- C_6H_8 oder 1,3- C_7H_{10} verwendet wurden) ist auch die Darstellung der Verbindung (C_5H_5)(OCOCH₃)-Pd₂[P(i- C_3H_7)₃]₂ (15) gelungen. Die in diesem Fall sehr ausgeprägte Stabilität der Zweikernstruktur zeigt sich z. B. in der Reaktion mit (CH₃)₃SiCl, die in sehr guter Ausbeute unter Acetat/Chlorid-Austausch zu 16 führt. Im Gang befindliche Untersuchungen deuten an, daß auch an anderen Systemen (μ -X)(μ -Y)Pd₂L₂ ein Brückenligandenaustausch möglich ist und sich damit ein weiterer Weg zu (*Pd*-*Pd*)-Zweikernkomplexen eröffnet.

Die vorliegende Arbeit wurde in dankenswerter Weise von der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie durch Personal- und Sachmittel sowie von den Firmen DEGUSSA und BASF Aktiengesellschaft durch wertvolle Chemikalienspenden unterstützt. Frau Dr. G. Lange danken wir für die Aufnahme der Massenspektren, Herrn Dr. W. Buchner und Herrn C.-P. Kneis für NMR-Messungen, Fräulein R. Schedl und Frau E. Ullrich für die Durchführung von Elementaranalysen. Alle Arbeiten wurden unter nachgereinigtem Stickstoff und in N₂-gesättigten, sorgfältig getrockneten Lösungsmitteln ausgeführt. Die Ausgangsverbindungen $[2-RC_3H_4PdCl]_2$ $(R = i-C_3H_7^{-11})$, $t-C_4H_9^{-11})$, Cl^{20}), $[2-RC_3H_4Pd]_2(OCOCH_3)_2$ (R = H, CH_3 , $i-C_3H_7$, $t-C_4H_9$)⁸⁾ und $Pd[P(i-C_3H_7)_3]_2^{-21}$ wurden nach Literaturangaben dargestellt. – NMR: Varian T 60, Varian XL 100 und Bruker WH 90. – MS: Varian MAT CH 7 (70 eV).

 $Di-\mu-(benzoato)-bis(2-isopropylallyl)dipalladium(II)$ (7c): 1.0 g (2.22 mmol) [2-i-C₃H₇C₃H₄-PdCl]₂ und 1.12 g (4.89 mmol) AgOCOC₆H₅ werden bei Raumtemp. und Lichtausschluß 5 h in 100 ml Aceton gerührt. Die hellgelbe Reaktionslösung wird filtriert, das Filtrat i. Vak. bis zur Trockne eingeengt und der Rückstand aus CH₂Cl₂/Petrolether umkristallisiert. Hellgelbe Kristalle. Ausb. 1.11 g (79%). Schmp. 130–132 °C.

C26H32O4Pd2 (621.4) Ber. C 50.26 H 5.11 Pd 33.71 Gef. C 50.34 H 5.07 Pd 32.93

 $Di-\mu-(benzoato)-bis(2-tert-butylallyl)dipalladium(II)$ (7d): 0.5 g (1.05 mmol) [2-t-C₄H₉C₃H₄-PdCl]₂ und 0.53 g (2.3 mmol) AgOCOC₆H₅ werden bei Raumtemp. und Lichtausschluß 14 h in 50 ml Aceton kräftig gerührt. Das erhaltene Reaktionsgemisch wird wie für 7e beschrieben aufgearbeitet. Hellgelbe Kristalle. Ausb. 0.61 g (90%). Zers.-P. ab 165 °C.

C28H36O4Pd2 (649.4) Ber. C 51.79 H 5.59 Pd 32.77 Gef. C 51.45 H 5.80 Pd 33.75

 $Di-\mu-(benzoato)-bis(2-chlorallyl)dipalladium(11): 1.0 g (2.3 mmol) [2-ClC₃H₄PdCl]₂ und 1.16 g (5.06 mmol) AgOCOC₆H₅ werden wie für 7c beschrieben umgesetzt. Die Aufarbeitung erfolgt analog. Hellgelbe Kristalle. Ausb. 0.78 g (56%). Zers.-P. ab 115 °C.$

C20H18Cl2O4Pd2 (606.1) Ber. C 39.64 H 2.99 Pd 35.11 Gef. C 39.80 H 3.26 Pd 34.20

Bis(2-isopropylallyl)-di- μ -(trifluoroacetato)dipalladium(II) (9c): 0.45 g (0.91 mmol) [2-i-C₃H₇C₃H₄Pd]₂(OCOCH₃)₂ und 0.9 ml CF₃CO₂H werden in 40 ml Aceton 5 min unter Rück-fluß erhitzt. Nach dem Abkühlen wird das Solvens abgezogen, der Rückstand i. Hochvak. getrocknet und aus CH₂Cl₂/Petrolether umkristallisiert. Gelbgrüne Kristalle. Ausb. 0.42 g (77%). Schmp. 103 – 105 °C.

C₁₆H₂₂F₆O₄Pd₂ (605.2) Ber. C 31.76 H 3.66 Gef. C 31.71 H 3.69

 $\begin{array}{ll} Bis(2\text{-}tert\text{-}butylallyl)\text{-}di\text{-}\mu\text{-}(trifluoroacetato)dipalladium(11) & (9d): 0.72 g (1.37 mmol) [2-t-C_4H_9C_3H_4Pd]_2(OCOCH_3)_2 und 0.9 ml CF_3CO_2H werden wie für 9c beschrieben umgesetzt. Die Aufarbeitung erfolgt analog. Gelbgrüne Kristalle. Ausb. 0.73 g (84%). Schmp. 141 – 142 °C. \end{array}$

 $C_{18}H_{26}F_6O_4Pd_2 \ (633.2) \quad \text{Ber. C 34.14 H 4.14 Pd 33.61} \quad \text{Gef. C 34.06 H 4.07 Pd 33.25}$

Bis(2-chlorallyl)-di- μ -(trifluoroacetato)dipalladium(11): 0.5 g (1.04 mmol) [2-ClC₃H₄Pd]₂-(OCOCH₃)₂ und 0.5 ml CF₃CO₂H werden wie für **9c** beschrieben umgesetzt. Die Aufarbeitung erfolgt analog. Gelbgrüne Kristalle. Ausb. 0.55 g (90%). Zers.-P. ab 100°C.

C₁₀H₈Cl₂F₆O₄Pd₂ (589.9) Ber. C 20.36 H 1.37 Gef. C 20.59 H 1.51

 μ -(Acetato)- μ -(allyl)-bis(triisopropylphosphan)dipalladium(1) (**6a**): 0.58 g (1.35 mmol) Pd[P(i-C₃H₇)₃]₂ werden in 50 ml Hexan gelöst, die Lösung auf -50 °C gekühlt und mit 0.28 g (0.67 mmol) [C₃H₅Pd]₂(OCOCH₃)₂ (**3a**) versetzt. Unter kräftigem Rühren erwärmt man langsam auf Raumtemp., rührt noch 1 h und zieht danach das Solvens bis auf wenige ml ab. Der gebildete Niederschlag wird filtriert, mehrmals mit kaltem Pentan gewaschen und aus Hexan umkristallisiert. Intensiv gelbe Kristalle. Ausb. 0.46 g (53%). Zers.-P. ab 90 °C.

MS (120 °C): m/e = 632 (3%; M⁺), 485 (3; Pd(OCOCH₃)L₂⁺), 442 (5; -i-C₃H₇), 426 (84; PdL₂⁺), 383 (8; -i-C₃H₇), 366 (15; Pd(C₃H₅)(OCOCH₃)L⁺), 266 (83; PdL⁺), 223 (100; -i-C₃H₇) [L = P(i-C₃H₇)₃].

 $C_{23}H_{50}O_2P_2Pd_2$ (633.4) Ber. C 43.62 H 7.96 Gef. C 44.02 H 8.22

 μ -(Acetato)- μ -(2-methylallyl)-bis(triisopropylphosphan)dipalladium(1) (**6b**): 0.41 g (0.96 mmol) Pd[P(i-C₃H₇)₃]₂ werden in 100 ml Hexan gelöst, die Lösung bei Raumtemp. mit 0.22 g (0.48 mmol) [2-CH₃C₃H₄Pd]₂(OCOCH₃)₂ (**3b**) versetzt und 1 h gerührt. Die erhaltene, nicht ganz klare Lösung wird über Celite filtriert und das Filtrat wie für **6a** beschrieben aufgearbeitet. Gelbe Kristalle. Ausb. 0.47 g (75%). Zers.-P. ab 85°C.

MS (95 °C): m/e = 646 (7%; M⁺), 489 (5; Pd₂L[P(i-C₃H₇)₂]⁺), 458 (6; Pd(OCOCH₃)₂[P(i-C₃H₇)₂]²⁺), 442 (39; Pd(OCOCH₃)L[P(i-C₃H₇)₂]⁺), 426 (54; PdL₂⁺), 380 (44; Pd(2-CH₃C₃H₄)-(OCOCH₃)L⁺), 341 (26; Pd(OCOCH₃)₂[P(i-C₃H₇)₂]⁺), 321 (34; Pd(2-CH₃C₃H₄)L⁺), 282 (43; Pd(OCOCH₃)[P(i-C₃H₇)₂]⁺), 223 (82; $-i-C_3H_7$) [L = P(i-C₃H₇)₃].

 μ -(Acetato)- μ -(2-isopropylallyl)-bis(triisopropylphosphan)dipalladium(1)(6c):0.72g(1.69 mmol) Pd[P(i-C₃H₇)₃]₂ werden in 30 ml Hexan gelöst, die Lösung auf -50 °C gekühlt und mit 0.42g (0.84 mmol) [2-i-C₃H₇C₃H₄Pd]₂(OCOCH₃)₂ (3c) versetzt. Unter kräftigem Rühren erwärmt man langsam auf Raumtemp, filtriert die gelbbraune Lösung über Celite und engt das Filtrat auf wenige ml ein. Beim Abkühlen auf -70 °C bilden sich hellgelbe Kristalle, die aus Hexan umkristallisiert werden. Ausb. 0.53g (46%). Zers.-P. ab 70 °C.

MS (80 °C): m/e = 674 (82%; M⁺), 650 (14; Pd₂(OCOCH₃)₂L₂⁺), 615 (3; Pd₂(2-i-C₃H₇C₃H₄)-L₂⁺), 591 (1; Pd₂(OCOCH₃)L₂⁺), 514 (5; Pd₂(2-i-C₃H₇C₃H₄)(OCOCH₃)L⁺), 505 (10; Pd₂-(OCOCH₃)[P(i-C₃H₇)₂]₂⁺), 489 (32; Pd₂L[P(i-C₃H₇)₂]⁺), 458 (100; Pd(OCOCH₃)₂[P(i-C₃H₇)₂]₂⁺) [L = P(i-C₃H₇)₃].

C₂₆H₅₆O₂P₂Pd₂ (675.5) Ber. C 46.23 H 8.36 Pd 31.50 Gef. C 46.05 H 7.95 Pd 31.76

 μ -(Acetato)- μ -(2-tert-butylallyl)-bis(triisopropylphosphan)dipalladium(1) (6d): Die Darstellung erfolgt, ausgehend von 0.56 g (1.3 mmol) Pd[P(i-C₃H₇)₃]₂ und 0.34 g (0.65 mmol) [2-t-C₄H₉C₃H₄Pd]₂(OCOCH₃)₂ (3d), wie für 6c beschrieben. Gelbgrüne Kristalle. Ausb. 0.4 g (46%). Zers.-P. ab 86 °C.

MS (95°C): m/e = 688 (6%; M⁺), 532 (0.5; Pd₂L₂⁺), 489 (2; -i-C₃H₇), 426 (100; PdL₂⁺), 422 (17; Pd(2-t-C₄H₉C₃H₄)(OCOCH₃)L⁺), 383 (10; PdL[P(i-C₃H₇)₂]⁺) [L = P(i-C₃H₇)₃].

C₂₇H₅₈O₂P₂Pd₂ (689.5) Ber. C 47.03 H 8.48 Gef. C 47.18 H 8.74

 μ -(*Benzoato*)- μ -(2-isopropylallyl)-bis(triisopropylphosphan)dipalladium(1) (8c): Die Darstellung erfolgt, ausgehend von 0.52 g (1.22 mmol) Pd[P(i-C₃H₇)₃]₂ und 0.39 g (0.61 mmol) [2-i-C₃H₇C₃H₄Pd]₂(OCOC₆H₅)₂ (7c), wie für 6c beschrieben. Hellgelbe Kristalle. Ausb. 0.54 g (60%). Zers.-P. ab 85°C.

MS (105°C): m/e = 736 (1%; M⁺), 693 (2; $-i-C_3H_7$), 653 (3; $Pd_2(OCOC_6H_5)L_2^+$), 547 (5; $Pd(OCOC_6H_5)L_2^+$), 470 (26; $Pd(2-i-C_3H_7C_3H_4)(OCOC_6H_5)L^+$), 426 (100; PdL_2^+) [L = $P(i-C_3H_7)_3$].

C₃₁H₅₈O₂P₂Pd₂ (737.6) Ber. C 50.48 H 7.93 Gef. C 49.80 H 7.24

 μ -(Benzoato)- μ -(2-tert-butylallyl)-bis(triisopropylphosphan)dipalladium(1) (8d): Die Darstellung erfolgt, ausgehend von 0.5 g (1.17 mmol) Pd[P(i-C₃H₇)₃]₂ und 0.38 g (0.59 mmol) [2-t-C₄H₉C₃H₄Pd]₂(OCOC₆H₅)₂ (7d), wie für 6c beschrieben. Gelbe Kristalle. Ausb. 0.52 g (59%). Schmp. 103 °C.

MS (110 °C): m/e = 750 (2.5%; M⁺), 707 (1; -i-C₃H₇), 653 (1; Pd₂(OCOC₆H₅)L₂⁺), 590 (1; Pd₂(2-t-C₄H₉C₃H₄)(OCOC₆H₅)L⁺), 547 (2; Pd(OCOC₆H₅)L₂⁺), 523 (2; Pd(2-t-C₄H₉C₃H₄)-L₂⁺), 484 (100; Pd(2-t-C₄H₉C₃H₄)(OCOC₆H₅)L⁺) [L = P(i-C₃H₇)₃].

 $C_{32}H_{60}O_2P_2Pd_2$ (751.6) Ber. C 51.14 H 8.05 Pd 28.31 Gef. C 50.58 H 7.89 Pd 28.57

 μ -(2-tert-Butylallyl)- μ -(trifluoroacetato)-bis(triisopropylphosphan)dipalladium(1) (10d): Die Darstellung erfolgt, ausgehend von 0.39 g (0.91 mmol) Pd[P(i-C₃H₇)₃]₂ und 0.27 g (0.43 mmol)

 $[2-t-C_4H_9C_3H_4Pd]_2(OCOCF_3)_2$ (9d), wie für 6c beschrieben. Gelbe Kristalle. Ausb. 0.39 g (64%). Schmp. 81-83 °C.

$$\begin{split} MS\,(70\,^{\circ}C)\colon m/e\,=\,742\,(5\,^{\circ};\,M^{\,+}),\,726\,(1\,;\,Pd_{2}(2\text{-t-}C_{4}H_{9}C_{3}H_{4})_{2}L_{2}^{\,+}),\,629\,(1\,;\,Pd_{2}(2\text{-t-}C_{4}H_{9}C_{3}H_{4})-L_{2}^{\,+}),\,480\,(20\,;\,Pd(2\text{-t-}C_{4}H_{9}C_{3}H_{4})L[P(i\text{-}C_{3}H_{7})_{2}]^{\,+}),\,426\,(100\,;\,PdL_{2}^{\,+})\,[\,L\,=\,P(i\text{-}C_{3}H_{7})_{3}]. \end{split}$$

C₂₇H₅₅F₃O₂P₂Pd₂ (743.5) Ber. C 43.62 H 7.46 Gef. C 43.14 H 7.17

 $Di-\mu$ -(acetato)-dichlor-bis(1,3-cyclohexadien)dipalladium(11) (11): 3.5 g (19.7 mmol) PdCl₂, 2.31 g (39.5 mmol) NaCl und 3.24 g (39.5 mmol) NaOCOCH₃ werden in 100 ml Eisessig 20 min unter Rückfluß erhitzt. Man läßt die purpurrote Lösung auf ca. 80 °C abkühlen und gibt 4 g (50 mmol) 1,3-Cyclohexadien zu. Es tritt sofort eine Reaktion unter Farbänderung nach Hellgelb ein. Man kühlt danach rasch auf Raumtemp. ab und entfernt das Solvens vorsichtig i. Hochvak. Der Rückstand wird dreimal mit CH₂Cl₂ extrahiert, die Extrakte werden über Celite filtriert. Aus dem eingeengten Filtrat erhält man nach Zugabe von Petrolether hellgelbe Kristalle. Ausb. 2.28 g (41%). Zers.-P. ab 68 °C.

C16H22Cl2O4Pd2 (562.1) Ber. C 34.19 H 3.95 Pd 37.86 Gef. C 33.94 H 4.06 Pd 37.71

Di- μ -(acetato)-dichlor-bis(1,3-cycloheptadien)dipalladium(11) (12): Die Darstellung erfolgt, ausgehend von 2.0 g(11.28 mmol) PdCl₂, 1.32 g(22.56 mmol) NaCl, 1.85 g(22.56 mmol) NaOCOCH₃ und 1.4 g (15 mmol) 1,3-Cycloheptadien, wie für 11 beschrieben. Hellgelbe Kristalle. Ausb. 2.0 g (60%). Zers.-P. ab 142 °C.

$$C_{18}H_{26}Cl_2O_4Pd_2$$
 (590.1) Ber. C 36.64 H 4.44 Pd 36.00

Gef. C 36.71 H 4.25 Pd 35.71 Molmasse 577 (kryoskop. in Benzol)

(Acetato)(1,3-cyclohexadien)(cyclopentadienyl)palladium(11) (13): 0.93 g (1.65 mmol) 11 und 1.01 g (3.76 mmol) TIC₅H₅ werden bei Raumtemp. 30 min in 50 ml Pentan kräftig gerührt. Man filtriert das Reaktionsgemisch über eine G3-Fritte, engt das Filtrat auf ca. 10 ml ein und läßt 18 h bei -78 °C stehen. Die verbliebene, blaßrote Lösung wird dekantiert, der Rückstand zweimal mit kaltem Pentan gewaschen und i. Hochvak. getrocknet. Hellrote Kristalle. Ausb. 0.63 g (61%). Zers.-P. ab 38 °C.

MS (35 °C): $m/e = 310 (51\%; M^+)$, 245 (72; $-C_5H_5$), 186 (37; PdC₆H₈⁺), 171 (100; PdC₅H₅⁺). $C_{13}H_{16}O_2Pd$ (310.7) Ber. C 50.26 H 5.19 Gef. C 50.24 H 5.37

(Acetato)(1,3-cycloheptadien)(cyclopentadienyl)palladium(11) (14): Die Darstellung erfolgt, ausgehend von 1.7 g (2.88 mmol) 12 und 1.75 g (6.04 mmol) TIC_5H_5 , wie für 13 beschrieben. Rote Kristalle, die sich bei Raumtemp. unter N₂ bereits nach wenigen Minuten zersetzen.

 μ -(Acetato)- μ -(cyclopentadienyl)-bis(triisopropylphosphan)dipalladium(1) (15): 0.35 g (1.12 mmol) 13 und 0.48 g (1.12 mmol) Pd[P(i-C₃H₇)₃]₂ werden jeweils in ca. 20 ml Hexan gelöst und die Lösungen unter kräftigem Rühren zusammengegeben. Nach ca. 5 min wird filtriert, das Filtrat auf wenige ml eingeengt und 12 h bei -78 °C stehengelassen. Es bildet sich ein orangefarbener Niederschlag, der abfiltriert, mit kaltem Hexan gewaschen und i. Hochvak. getrocknet wird. Ausb. 0.63 g (67%). Zers.-P. ab 80 °C.

MS (125 °C): m/e = 656 (3%; M⁺), 496 (5; - L), 426 (22; PdL₂⁺), 331 (28; Pd(C₅H₅)L⁺), 266 (58; PdL⁺) [L = P(i-C₃H₇)₃].

C25H50O2P2Pd2 (657.4) Ber. C 45.68 H 7.67 Pd 32.37 Gef. C 45.89 H 7.75 Pd 32.00

Die Darstellung von 15 gelingt ebenfalls ausgehend von 14 (unter den gleichen Bedingungen wie oben beschrieben), doch ist die Ausbeute aufgrund der geringen Stabilität des Ausgangskomplexes wesentlich geringer (ca. 15-20%).

 μ -Chloro- μ -(cyclopentadienyl)-bis(triisopropylphosphan)dipalladium(1) (16): Eine Lösung von 0.5 g (0.76 mmol) 15 in 20 ml Pentan wird bei Raumtemp. mit der äquimolaren Menge (CH₃)₃SiCl versetzt. Nach 20 min Rühren wird über Celite filtriert, das Filtrat auf wenige ml eingeengt und bei

MS (80°C): m/e = 632 (0.5%; M⁺), 366 (90; PdCl(C₅H₅)L⁺), 301 (26; PdClL⁺), 266 (100; PdL⁺) [L = P(i-C₃H₇)₃].

(2-tert-Butylallyl)(2,4-pentandionato)palladium(11): 0.76 g (1.41 mmol) 3d, 1.5 g (18.0 mmol) Na_2CO_3 und 1.2 ml frisch destilliertes Acetylaceton werden bei Raumtemp. 90 min kräftig in 50 ml Aceton gerührt. Danach filtriert man über Celite, entfernt das Solvens i. Vak. und kristallisiert aus Pentan um. Farblose Würfel. Ausb. 0.82 g (96%). Schmp. 83 – 84 °C.

C₁₂H₂₀O₂Pd (302.7) Ber. C 47.62 H 6.67 Pd 35.15 Gef. C 47.64 H 6.60 Pd 35.15

Bis(2,4-pentandionato)(triisopropylphosphan)palladium(II) (17): Zu 0.5 g (1.64 mmol) Pd(C₅H₇O₂)₂ in 50 ml Benzol gibt man 0.3 ml (1.64 mmol) P(i-C₃H₇)₃. Die Lösung wird 14 h bei Raumtemp. gerührt, danach das Solvens i. Vak. entfernt und der verbleibende ölige Rückstand aus Toluol/Hexan umkristallisiert. Gelbe Kristalle. Ausb. 0.46 g (59%). Schmp. 114 – 116°C.

MS $(100^{\circ}C)$: $m/e = 464 (13\%; M^+)$, 365 $(100; -C_5H_7O_2)$, 322 $(3; -i-C_3H_7)$, 304 $(10; Pd-(C_5H_7O_2)_2^+)$, 266 $(10; PdP(i-C_3H_7)_3^+)$.

C19H35O4Pd (464.9) Ber. C 49.09 H 7.59 Pd 22.89 Gef. C 49.28 H 7.68 Pd 22.78

Literatur

- ¹⁾ XXX. Mitteil.: H. Werner und A. Kühn, J. Organomet. Chem. 179, 439 (1979).
- ²⁾ H. Werner, D. Tune, G. Parker, C. Krüger und D. J. Brauer, Angew. Chem. 87, 205 (1975); Angew. Chem., Int. Ed. Engl. 14, 185 (1975).
- ³⁾ H. Werner, A. Kühn, D. J. Tune, C. Krüger, D. J. Brauer, J. C. Sekutowski und Yi-Hung Tsay, Chem. Ber. 110, 1763 (1977).
- ⁴⁾ H. Werner und A. Kühn, Angew. Chem. 89, 427 (1977); Angew. Chem., Int. Ed. Engl. 16, 412 (1977).
- ⁵⁾ A. Kühn und H. Werner, J. Organomet. Chem. 179, 421 (1979).
- 6) H. Werner und A. Kühn, Z. Naturforsch., Teil B 33, 1360 (1978).
- 7) H. J. Kraus, unveröffentlichte Ergebnisse.
- ⁸⁾ S. D. Robinson und B. L. Shaw, J. Organomet. Chem. 3, 367 (1967).
- 9) P. W. N. M. van Leeuwen und A. P. Praat, J. Organomet. Chem. 21, 501 (1970).
- ¹⁰⁾ Für eine Berechnung der Isotopenverteilung in Pd₂-Species siehe: A. Kühn, Dissertation, Univ. Würzburg 1979.
- ¹¹⁾ H. C. Volger, Rec. Trav. Chim. Pays-Bas 88, 225 (1969).
- ¹²⁾ E. O. Fischer und H. Werner, Chem. Ber. 95, 695 (1962).
- ¹³⁾ J. Powell und T. Jack, Inorg. Chem. 11, 1039 (1972).
- ¹⁴⁾ E. Pretsch, J. Th. Clerc, J. Seibl und W. Simon, Tabellen zur Strukturaufklärung organischer Verbindungen, S. C 100, Springer, Berlin-Heidelberg-New York 1976.
- ¹⁵ W. Bremser, L. Ernst und B. Franke, Carbon-13 NMR Spectral Data, Verlag Chemie, Weinheim-New York 1978.
- ¹⁶⁾ E. O. Fischer und M. Herberhold, Z. Naturforsch., Teil B 16, 841 (1961).
- ¹⁷⁾ H. Felkin und G. K. Turner, J. Organomet. Chem. 129, 429 (1977).
- ¹⁸⁾ S. Baba, T. Ogura und S. Kawaguchi, Bull. Chem. Soc. Jpn. 47, 665 (1974); Kristallstruktur: M. Horike, Y. Kai, N. Yasuka und N. Kasai, J. Organomet. Chem. 72, 441 (1974).
- ¹⁹⁾ F. Dawans, J. C. Marechal und Ph. Teyssie, J. Organomet. Chem. 21, 259 (1970).
- ²⁰⁾ W. T. Dent, R. Long und A. J. Wilkinson, J. Chem. Soc. 1964, 1585.
- ²¹⁾ W. Kuran und A. Musco, Inorg. Chim. Acta 12, 187 (1975).

[210/79]